Proteus 2019

We would like to thank all the teams that took part in 2019/20

Due to the COVID-19 pandemic the Proteus Innovation Competition was unable to host its in-person annual pitch finale event. We instead opted to host a virtual finale where finalists were asked to submit their final pitches via video. We would like to thank the contestants and judges for their willingness to adapt to the change in programming. The judges evaluated the pitches and we are now able to announce the winners!

2019/20 Winners

Congratulations to the following competition winners who received $5k cash prizes and the opportunity to license the technologies:

Winner: BacCheck

Western’s Microbiome modulation with CRISPR

Tomi Laditi, Berto Mill, Aleks Dalek, David Mill

Winner: Neolyx

McMaster’s Neonatal Laryngoscope

Zoey Li, Sophia Lu, Jamie Ching

Winner: BMW Gait

UWindsor’s Flexible pressure sensor

Bashar Yafouz, Wagner H. Souza, Maryam Majedi

2019/20 Runner-ups

We want to give an honourable mention to the runner-ups who made it to the pitch phase of the competition. Well done!

Runner-up: Team Plasmid Palooza

Western’s Microbiome modulation with CRISPR

Chris Ng-Fletcher, Vivek Vyas, Katrina Manzocco, Chi Wang, Rutvik Vyas, Jesse Fast, Siraat Mustafa

Runner-up: Intubex Innovations

McMaster’s Neonatal Laryngoscope

Adam Paish, Jeiran Eskandari, Sathya Sridhar

Runner-up: McConsultants

McMaster’s Neonatal Laryngoscope

Nali Amin, Seraj Singh

Runner-up: Team Sole Sense

Guelph’s Muscle Training and Recovery Device

Rebecca Bradley, Brooke Rathie

2019/20 In Review

Individuals across 3 technologies

Teams registered

Teams passed Stage 1

Teams passed Stage 2


2019/20 Technologies

View details from each of the three technologies by clicking on the left menu below.

Western logo

Microbiome modulation with CRISPR

A cis-conjugative plasmid system for microbiota modulation using a hybrid CRISPR nuclease technology

Microbial ecosystems are essential for human health and proper development, and disturbances of the ecosystem correlate with a multitude of diseases. A central problem is the lack of tools to selectively control pathogenic species that cause disease, or to otherwise alter or transform the composition of the human or non-human microbiome.

Tech Overview

Researchers at Western University have developed a novel state-of-the-art system in combination with enhancements to current gene editing technology to modulate the microbiome. Traditional methods which include antibiotics, phage-based therapy, probiotics and prebiotics are challenged with limitations and exhibit disadvantages. Using the current technology enables one to modulate the microbiome, to eliminate or alter fitness for a bacterium within a biofilm (hard to reach areas) with close to 100% efficiency.

Benefits and Applications

  • Alter a single bacterium within a microbiome – eliminate or modulate fitness
  • System works efficiently within bacterial biofilms with target and elimination with close to 100% efficiency
  • Allows to target bacteria with antibiotic resistance
  • Alter microbiome within a human or non-human microbiome
  • System may be administered topically, transdermally, sublingually, rectally, vaginally, ocularly, subcutaneous, intramuscularly, intraperitoneally, urethrally, intranasally, by inhalation or orally
  • Current system may also be administered directly to site of microbial infection
  • Treatment: for example, but not limited to – urinary tract infections, oral cavities, infections associated with implanted prosthetic devices, dental implants, or medical devices, skin infections

David Edgell, PhD

David Edgell’s lab develops tools for gene editing and synthetic biology. They use evolutionary, genetic, structural and biochemical approaches to design, test and optimize CRISPR-based nucleases for precise and efficient gene editing. They apply their tools to better enable genome editing in eukaryotic algae, control of microbial populations, and treatment of human disease.

Neonatal Laryngoscope

A medical device for the safe an effective intubation of premature babies


Each year in developed countries worldwide, more than 14 million babies are born preterm (The Lancet: Vol 379 June 9, 2012) with approximately 6-7% (or close to 1 million) requiring intubation. Currently neonatal intubation is performed using a miniature adult laryngoscope which is marketed as a pediatric laryngoscope. There is currently no laryngoscope designed exclusively designed for neonates themselves.

Researchers at McMaster have designed and patented (US 10327628) a neonatal laryngoscope keeping in mind the anatomy of neonates and making intubation significantly simpler and safer. In addition, our laryngoscope addresses the need to reduce the trauma associated with the existing laryngoscopes in the market.

While it is difficult to directly estimate the worldwide market size for a neonatal laryngoscope as no specific device currently exists, a disposable device with a price of $100 USD marketed in the developed world (where we estimate one million infant intubations per year) suggests an addressable market approaching $100M USD annually.

Applications and Advantages

Overall advantages of our neonatal laryngoscope are:

  • Provides unobstructed vision of the larynx (opening of the windpipe) against the partial obstructed vision of current laryngoscope
  • Eliminates the chances of trauma to the upper lip and jaw caused by the present laryngoscope blade – an essential advantage
  • Less bulky than the current laryngoscope making it easier for the physician to handle
  • The ergonomics are such that the device does not require health care providers intubating the newborn to learn a new technique but facilitates the intubation procedure

Dr. Srinivasa Murthy Doreswamy

Dr. Doreswamy is a Professor in Pediatrics and leads the division of Neonatology at the JSS Medical College in Mysore, India. Doreswamy has numerous publications in neonatal ventilation, neonatal nutrition, growth and development and research methodology. He has developed several innovations, holding patents in both the U.S. and India. He completed a fellowship in Neonatal and Perinatal Medicine at McMaster University, and has completed training and fellowships in Australia and the U.K.



Flexible pressure sensor

A simple, cheap, and customizable method to produce flexible and stretchable high-pressure sensors

Pressure is a parameter that is commonly monitored in many industrial, automotive, biomedical, and consumer electronics applications. With an increase in demand for conformal pressure measurements, numerous flexible sensing technologies have been developed for pressure measurements. Among others, soft and flexible pressure sensors are gaining greater popularity because they are able to conform to the environment to be monitored and can also provide 3D sensing with higher deformability and conformability. These technologies are often very expensive to produce, requiring multiple complex steps in highly specialized facilities, using methods such etching using photolithography.

Tech Overview

This technology focuses on the fabrication and design of intrinsically flexible, stretchable and conformable pressure sensors based on capacitive measurements. In contrast to previous methods to fabricate flexible and stretchable pressure sensors, the technology relies on simple, ultra-low-cost molding to pattern soft materials and dielectrics. The type of polymer can also be customized for additional desired properties, such as using polymer that is self-healing.
These new sensors allow for a monitoring of pressure in harsh environments and directly at the point-of-use. The result is a method that delivers high pressure sensitivity in flexible polymer-based sensors without the need for expensive and time-consuming methods.


The technology is readily scalable, and considerably cheaper than the current propositions while still maintaining highly sensitive pressure detection, especially at high pressure regimes. Furthermore, this technology is customizable depending on the polymer used and can fit a wide variety of areas.
Manufacturing is not anticipated to require any specialized equipment or access to specialized microfabrication facilities. In contrast to previous methods to fabricate flexible and stretchable pressure sensors, this technology relies on simple, ultra low-cost molding to pattern siloxane-based materials (dielectric) thus considerably reducing manufacturing cost and time.

The proposed solution would deliver the following benefits:

  • Reduce the cost of manufacturing flexible pressure sensors:
  • Eliminate the need for specialized equipment required for sensor fabrication
  • Rapid manufacturing without the need for controlled microfabrication environment
  • Enable mass manufacturing
  • Ease of sensor assembly and packaging
  • Robust sensitivity and sensor response time
  • Expand the applications for conformal pressure sensing

Potential Applications

A key application is monitoring of pressure in harsh environments and at point-of-use monitoring. Potential applications include fabrication of conformal pressure sensors that could be used in a variety of sectors such as automotive, soft robotics, biophysical pressure measurement, pressure sensing for smart clothing and smart shoe, pressure sensing in electronic interface devices and in human-machine interaction devices. The ability to customize the polymer can tailor sensing properties specific to industry needs.

Mohammed Jalal Ahamed, PhD

Dr. Ahamed is an Assistant Professor at Mechanical, Automotive and Materials Engineering Department at University of Windsor. His research group is relentlessly innovating futuristic 3D micro/nano-electromechanical sensors using cost-effective manufacturing methods with improved sensitivity, reduced material footprint and low power consumption for high precision applications in automotive, aerospace, robotics, and biomedical. He has over 10 years of experience in sensor fabrication that resulted into two US patents, several patents pending and over 50 articles.

Simon Rondeau-Gagné, PhD

Simon Rondeau-Gagné received his PhD in chemistry from Université Laval, Québec, Canada, in 2014 under the guidance of Prof. Jean-François Morin. The same year, he joined the Department of Chemical Engineering at Stanford University, California, USA, as a postdoctoral research fellow where he worked on the development of new materials for skin-inspired electronics under the supervision of Prof. Zhenan Bao. In 2016, he moved to the University of Windsor as an Assistant Professor in the Department of Chemistry and Biochemistry. The Rondeau-Gagné research group focuses their research on conjugated polymers chemistry with a special emphasis on generating materials with robust mechanical properties and self-healing capability. With the rise of new electronic devices that need to be simultaneously more flexible and robust, access to new materials with innovative properties is required. Toward that goal, the R.-G. group developed a broad expertise that covers the entire spectra of materials chemistry from materials design and synthesis to device fabrication and optimization.

Julia Pignanelli, BSc, MSc(c)

Julia joined the Rondeau-Gagné group in Summer 2018 after completing her bachelor’s degree in biological sciences (Honours) at UWindsor. As an undergraduate researcher, Julia worked at the interface of engineering, chemistry and biological sciences, to develop stretchable pressure sensors for biomedical applications. After completing her project, Julia decided to keep on exploring the interface between chemistry and engineering,and began a MSc degree in Chemistry in the R.-G. group, jointed with the group of Prof. Jalal Ahamed in Mechanical and Materials Engineering. She is currently using her multidisciplinary expertise to develop novel self-healing materials and devices.


Figure 1. Flexible capacitance-based pressure sensor: (a) picture of an assembled device, (b) fabricated PDMS dielectric layer and (c) 3D schematic showing different layers of the sensor.

Figure 2. Procedure for producing replica tape ribbon molds of PDMS used as dielectrics. Electron microscopy image (right) showing the dielectric structure.